

SAKARYA UNIVERSITY FACULTY OF ENGINEERING/SCIENCE 2025-2026 FALL SEMESTER PHYSICS-I LABORATORY EXPERIMENT REPORT

Department:	Name Surname- Signature:
C	
Group	
Number:	
EXPERIMENT NO 5	
EXPERIMENT TITLE : ROTATIONAL MOTION	
OBJECTIVE OF THE EXPERIMENT (5 points):	
0202011/2 01 1112 2111 2111/12/17 (6 poulle)	

THEORY OF THE EXPERIMENT (9 points):					
1.	1. Define angular velocity, angular acceleration, and angular frequency.				
2.	Write the mathematical equations relating angular velocity to linear velocity, angular				
	acceleration to linear acceleration, and angular frequency to linear frequency.				
3.	Define moment of inertia and inertia moment. State their mathematical equations.				

EXPERIMENTAL SETUP:					
1.	Draw the setup used in the experiment .(3 points)				
2.	Write the names of the materials used in the experiment and briefly explain them. (3 puan)				
PR	ROCEDURE OF THE EXPERIMENT:				
	Explain the steps of the experiment procedure completely and sequentially. (5 points)				
LA	plant the steps of the experiment procedure completely and sequentiany. (5 points)				

1) Determine the position of the traces by taking the direction of motion as the positive **y** direction. Then, record the position of each trace and the time it takes for mass **m** to reach that position in the table below.. (5 points)

Table 1

Point	y (cm)	t (sn)	$t^2 (sn^2)$

2) Using the data from the table, plot the position versus the square of time $(y-t^2)$ graph. Calculate the linear acceleration of the motion using the slope of this graph. (15 points)

3) After finding the angle ϕ that the air table makes with the horizontal, and then calculate the angular acceleration the equation $\alpha = \frac{2m(g\sin\phi - a)}{MR}$ using the relation $\alpha = \frac{a}{R}$ calculate the angular acceleration again and compare the values obtained. (10 points)

4) Compare the tension in the string calculated from $T = m(g \sin \varphi - a)$ ve $T = \frac{MR\alpha}{2}$ (10 points)

5) Calculate the moment of inertia of the mass M disk in two ways, using both the equation
$$I = \frac{RT}{\alpha}$$
 and the equation $I = \frac{MR^2}{2}$. Then, compare these values. (10 points)

6) Find the angular formula
$$w = \alpha t_{son} = \frac{2m(g \sin \phi - a)t_{son}}{MR}$$
, and the final linear velocity of the mass m using the relationship $v=R$ w.

7) Show that the total energy is conserved using the equation
$$-mgd\sin\phi + \frac{1}{2}mv^2 + \frac{1}{2}Iw^2 = 0$$
(Take d = y_{final}). (10 points)