

SAKARYA UNIVERSITY FACULTY OF ENGINEERING/SCIENCE 2025-2026 FALL SEMESTER PHYSICS-I LABORATORY EXPERIMENT REPORT

Department:	Name Surname - Signature:
Crown	
Group Number:	
EXPERIMENT NO	3
EXPERIMENT TITLE	: NEWTON'S LAWS OF MOTION
OBJECTIVE OF THE EX	XPERIMENT (5 points):

THEORY OF THE EXPERIMENT (8 points):				
1. Write and explain Newton's laws of motion. (Note: Write the names and units of the quantities in all mathematical equations).				
2. Define Atwood machine and explain what it is used for.				

EXPERIMENTAL SETUP:	
1. Draw the setup used in the experiment. (3 points)	
2. Write the names of the materials used in the experiment and briefly explain them. (3 points)	
PROCEDURE OF THE EXPERIMENT:	
Explain the steps of the experiment procedure completely and sequentially. (5 points)	

) C===:r	, the mean!1		TIONS	oireta)			
) Spescify	the magnitude	es of masses m	11 and m2. (5 pc	oints)			
m_1 =	g						
m ₂ =	g						
	· ·						
	table below ap	opropriately u	using the data	you obtained.	(5 points)		
Point No	T7 ()	m1 mass			m2 mass		
"n"	Y _n (cm)	$t_{\rm n}({\rm sn})$	$t_{\rm n}^2({\rm sn}^2)$	Y _n (cm)	t _n (sn)	$t_{\rm n}^2({\rm sn}^2)$	
0							
$\frac{1}{2}$							
3							
4							
5							
6							
(15 poin	ats)	ph for mass m	on graph pape	r and find acce	leration a₁usin	ng the slope of this gra	
) Draw th	n ts) ne y-t ² graph fo					ng the slope of this gr	
	n ts) ne y-t ² graph fo						
) Draw th (15 poin	ne y-t ² graph fo	or mass m 2 on	graph paper an	d find the acce	leration a ₂ usi		

6)	Calculate the theoretical acceleration value using the formula. Perform the % error
	calculation for the accelerations. (Take g=980 cm/s ₂) (5 points)

$$a = \frac{(m_2 - m_1)g\sin\phi}{m_1 + m_2}$$

7) Calculate the experimental value of the gravitational acceleration using the formula below, and perform the % error calculation for the gravitational accelerations by taking the theoretical value as
$$g=980 \text{ cm/s}^2$$
 (5 points)

$$g_{\text{deneysel}} = \frac{a_{\text{deneysel}} \left(m_2 + m_1\right)}{\left(m_2 - m_1\right) \cdot \sin \phi}$$

8) Calculate the magnitude of the tension force in the string using the formula
$$T = \frac{2m_2m_1g\sin\phi}{m_1+m_2}$$

(Use g experimental) (5 points)

EXPERIMENT QUESTIONS				
1)	Define what Force is. (3 points)			
2)	What is the relationship between the acceleration of an object and magnitude of the net force (F) acting upon it? (4 points)			
3)	If an object is at rest, can you say that there are no external forces acting upon it? Explain. (4 points)			